
21
Deterministic primality testing

For many years, despite much research in the area, there was no known determinis-
tic, polynomial-time algorithm for testing whether a given integer n > 1 is a prime.
However, that is no longer the case — the breakthrough algorithm of Agrawal,
Kayal, and Saxena, or Algorithm AKS for short, is just such an algorithm. Not only
is the result itself remarkable, but the algorithm is striking both in its simplicity,
and in the fact that the proof of its running time and correctness are completely
elementary (though ingenious).

We should stress at the outset that although this result is an important theoretical
result, as of yet, it has no real practical significance: probabilistic tests, such as the
Miller–Rabin test discussed in Chapter 10, are much more efficient, and a practi-
cally minded person should not at all be bothered by the fact that such algorithms
may in theory make a mistake with an incredibly small probability.

21.1 The basic idea
The algorithm is based on the following fact:

Theorem 21.1. Let n > 1 be an integer. If n is prime, then for all a ∈ Zn, we have
the following identity in the ring Zn[X]:

(X + a)n = X n + a. (21.1)

Conversely, if n is composite, then for all a ∈ Z∗n, the identity (21.1) does not hold.

Proof. Note that

(X + a)n = X n + an +
n−1
∑

i=1

(

n

i

)

aiX n−i.

If n is prime, then by Fermat’s little theorem (Theorem 2.14), we have an = a,
and by Exercise 1.14, all of the binomial coefficients

(n
i

)

, for i = 1, . . . , n − 1, are

548

21.2 The algorithm and its analysis 549

divisible by n, and hence their images in the ring Zn vanish. That proves that the
identity (21.1) holds when n is prime.

Conversely, suppose that n is composite and that a ∈ Z∗n. Consider any prime
factor p of n, and suppose n = pkm, where p - m.

We claim that pk -
(n
p

)

. To prove the claim, one simply observes that
(

n

p

)

=
n(n − 1) · · · (n − p + 1)

p!
,

and the numerator of this fraction is an integer divisible by pk, but no higher power
of p, and the denominator is divisible by p, but no higher power of p. That proves
the claim.

From the claim, and the fact that a ∈ Z∗n, it follows that the coefficient of X n−p

in (X + a)n is not zero, and hence the identity (21.1) does not hold. 2

Of course, Theorem 21.1 does not immediately give rise to an efficient primality
test, since just evaluating the left-hand side of the identity (21.1) takes time Ω(n) in
the worst case. The key observation of Agrawal, Kayal, and Saxena is that if (21.1)
holds modulo X r − 1 for a suitably chosen value of r, and for sufficiently many a,
then n must be prime. To make this idea work, one must show that a suitable r
exists that is bounded by a polynomial in len(n), and that the number of different
values of a that must be tested is also bounded by a polynomial in len(n).

21.2 The algorithm and its analysis
The algorithm is shown in Fig. 21.1. A few remarks on implementation are in
order:

• In step 1, we can use the algorithm for perfect-power testing discussed in
Exercise 3.31.

• The search for r in step 2 can just be done by brute-force search; likewise,
the determination of the multiplicative order of [n]r ∈ Z∗r can be done by
brute force: after verifying that gcd(n, r) = 1, compute successive powers
of n modulo r until we get 1.

We want to prove that Algorithm AKS runs in polynomial time and is correct.
To prove that it runs in polynomial time, it clearly suffices to prove that there exists
an integer r satisfying the condition in step 2 that is bounded by a polynomial in
len(n), since all other computations can be carried out in time (r + len(n))O(1).
Correctness means that it outputs true if and only if n is prime.

550 Deterministic primality testing

On input n, where n is an integer and n > 1, do the following:

1. if n is of the form ab for integers a > 1 and b > 1 then
return false

2. find the smallest integer r > 1 such that either
gcd(n, r) > 1

or
gcd(n, r) = 1 and
[n]r ∈ Z∗r has multiplicative order > 4 len(n)2

3. if r = n then return true
4. if gcd(n, r) > 1 then return false
5. for j ← 1 to 2 len(n)br1/2c + 1 do

if (X + j)n 6≡ X n + j (mod X r − 1) in the ring Zn[X] then
return false

6. return true

Fig. 21.1. Algorithm AKS

21.2.1 Running time analysis
The question of the running time of Algorithm AKS is settled by the following
fact:

Theorem 21.2. For integers n > 1 and m ≥ 1, the least prime r such that r - n
and the multiplicative order of [n]r ∈ Z∗r is greater than m is O(m2 len(n)).

Proof. Call a prime r “good” if r - n and the multiplicative order of [n]r ∈ Z∗r is
greater thanm, and otherwise call r “bad.” If r is bad, then either r | n or r | (nd−1)
for some d = 1, . . . ,m. Thus, any bad prime r satisfies

r | n
m
∏

d=1

(nd − 1).

If all primes r up to some given bound x ≥ 2 are bad, then the product of all primes
up to x divides n

∏m
d=1(nd − 1), and so in particular,

∏

r≤x
r ≤ n

m
∏

d=1

(nd − 1),

21.2 The algorithm and its analysis 551

where the first product is over all primes r up to x. Taking logarithms, we obtain

∑

r≤x
log r ≤ log

(

n

m
∏

d=1

(nd − 1)
)

≤ (log n)
(

1 +
m
∑

d=1

d
)

= (log n)(1 + m(m + 1)/2).

But by Theorem 5.7, we have
∑

r≤x
log r ≥ cx

for some constant c > 0, from which it follows that

x ≤ c−1(log n)(1 + m(m + 1)/2),

and the theorem follows. 2

From this theorem, it follows that the value of r found in step 2 — which need
not be prime—will be O(len(n)5). From this, we obtain:

Theorem 21.3. Algorithm AKS can be implemented so that its running time is
O(len(n)16.5).

Proof. As discussed above, the value of r determined in step 2 will be O(len(n)5).
It is fairly straightforward to see that the running time of the algorithm is dominated
by the running time of step 5. Here, we have to performO(r1/2 len(n)) exponentia-
tions to the power n in the ring Zn[X]/(X r−1). Each of these exponentiations takes
O(len(n)) operations in Zn[X]/(X r − 1), each of which takes O(r2) operations in
Zn, each of which takes time O(len(n)2). This yields a running time bounded by a
constant times

r1/2 len(n) × len(n) × r2 × len(n)2 = r2.5 len(n)4.

Substituting the bound O(len(n)5) for r, we obtain the desired bound. 2

21.2.2 Correctness
As for the correctness of Algorithm AKS, we first show:

Theorem 21.4. If the input to Algorithm AKS is prime, then the output is true.

Proof. Assume that the input n is prime. The test in step 1 will certainly fail. If the
algorithm does not return true in step 3, then certainly the test in step 4 will fail as
well. If the algorithm reaches step 5, then all of the tests in the loop in step 5 will
fail—this follows from Theorem 21.1. 2

The interesting case is the following:

552 Deterministic primality testing

Theorem 21.5. If the input to Algorithm AKS is composite, then the output is
false.

The proof of this theorem is rather long, and is the subject of the remainder of
this section.

Suppose the input n is composite. If n is a prime power, then this will be detected
in step 1, so we may assume that n is not a prime power. Assume that the algorithm
has found a suitable value of r in step 2. Clearly, the test in 3 will fail. If the test
in step 4 passes, we are done, so we may assume that this test fails; that is, we may
assume that all prime factors of n are greater than r. Our goal now is to show that
one of the tests in the loop in step 5 must pass. The proof will be by contradiction:
we shall assume that none of the tests pass, and derive a contradiction.

The assumption that none of the tests in step 5 fail means that in the ring Zn[X],
the following congruences hold:

(X + j)n ≡ X n + j (mod X r − 1) (j = 1, . . . , 2 len(n)br1/2c + 1). (21.2)

For the rest of the proof, we fix a particular prime divisor p of n— the choice
of p does not matter. Since p | n, we have a natural ring homomorphism from
Zn[X] to Zp[X] (see Examples 7.52 and 7.46), which implies that the congruences
(21.2) hold in the ring of polynomials over Zp as well. From now on, we shall work
exclusively with polynomials over Zp.

Let us state in somewhat more abstract terms the precise assumptions we are
making in order to derive our contradiction:

(A0) n > 1, r > 1, and ` ≥ 1 are integers, p is a prime dividing n, and
gcd(n, r) = 1;

(A1) n is not a prime power;

(A2) p > r;
(A3) the congruences

(X + j)n ≡ X n + j (mod X r − 1) (j = 1, . . . , `)

hold in the ring Zp[X];

(A4) the multiplicative order of [n]r ∈ Z∗r is greater than 4 len(n)2;

(A5) ` > 2 len(n)br1/2c.
The rest of the proof will rely only on these assumptions, and not on any other

details of Algorithm AKS. From now on, only assumption (A0) will be implicitly
in force. The other assumptions will be explicitly invoked as necessary. Our goal
is to show that assumptions (A1), (A2), (A3), (A4), and (A5) cannot all be true
simultaneously.

21.2 The algorithm and its analysis 553

Define the Zp-algebra E := Zp[X]/(X r − 1), and let ξ := [X]X r−1 ∈ E, so that
E = Zp[ξ]. Every element of E can be expressed uniquely as g(ξ) = [g]X r−1, for
g ∈ Zp[X] of degree less than r, and for an arbitrary polynomial g ∈ Zp[X], we
have g(ξ) = 0 if and only if (X r − 1) | g. Note that ξ ∈ E∗ and has multiplicative
order r: indeed, ξr = 1, and ξs−1 cannot be zero for s < r, since X s−1 has degree
less than r.

Assumption (A3) implies that we have a number of interesting identities in the
Zp-algebra E:

(ξ + j)n = ξn + j (j = 1, . . . , `).

For the polynomials gj := X + j ∈ Zp[X], with j in the given range, these identities
say that gj(ξ)n = gj(ξn).

In order to exploit these identities, we study more generally functions σk, for
various integer values k, that send g(ξ) ∈ E to g(ξk), for arbitrary g ∈ Zp[X], and
we investigate the implications of the assumption that such functions behave like
the k-power map on certain inputs. To this end, let Z(r) denote the set of all positive
integers k such that gcd(r, k) = 1. Note that the set Z(r) is multiplicative, by which
we mean 1 ∈ Z(r), and kk′ ∈ Z(r) for all k, k′ ∈ Z(r). Also note that because of our
assumption (A0), both n and p are in Z(r). For k ∈ Z(r), let σ̂k : Zp[X] → E be
the polynomial evaluation map that sends g ∈ Zp[X] to g(ξk). This is of course a
Zp-algebra homomorphism, and we have:

Lemma 21.6. For all k ∈ Z(r), the kernel of σ̂k is (X r − 1), and the image of σ̂k
is E.

Proof. Let J := Ker σ̂k, which is an ideal of Zp[X]. Let k′ be a positive integer
such that kk′ ≡ 1 (mod r), which exists because gcd(r, k) = 1.

To show that J = (X r − 1), we first observe that

σ̂k(X r − 1) = (ξk)r − 1 = (ξr)k − 1 = 1k − 1 = 0,

and hence (X r − 1) ⊆ J .
Next, we show that J ⊆ (X r − 1). Let g ∈ J . We want to show that (X r − 1) | g.

Now, g ∈ J means that g(ξk) = 0. If we set h := g(X k), this implies that h(ξ) = 0,
which means that (X r − 1) | h. So let us write h = (X r − 1)f , for some f ∈ Zp[X].
Then

g(ξ) = g(ξkk
′
) = h(ξk

′
) = (ξk

′r − 1)f (ξk
′
) = 0,

which implies that (X r − 1) | g.
That finishes the proof that J = (X r − 1).
Finally, to show that σ̂k is surjective, suppose we are given an arbitrary element

554 Deterministic primality testing

of E, which we can express as g(ξ) for some g ∈ Zp[X]. Now set h := g(X k
′
), and

observe that

σ̂k(h) = h(ξk) = g(ξkk
′
) = g(ξ). 2

Because of Lemma 21.6, then by Theorem 7.26, the map σk : E → E that sends
g(ξ) ∈ E to g(ξk), for g ∈ Zp[X], is well defined, and is a ring automorphism —
indeed, a Zp-algebra automorphism—on E. Note that for all k, k′ ∈ Z(r), we have

• σk = σk′ if and only if ξk = ξk
′
if and only if k ≡ k′ (mod r), and

• σk ◦ σk′ = σk′ ◦ σk = σkk′ .

So in fact, the set {σk : k ∈ Z(r)} under composition forms an abelian group that
is isomorphic to Z∗r .

Remark. It is perhaps helpful (but not necessary for the proof) to examine
the behavior of the map σk in a bit more detail. Let α ∈ E, and let

α =
r−1
∑

i=0

aiξ
i

be the canonical representation of α. Since gcd(r, k) = 1, the map
π : {0, . . . , r−1} → {0, . . . , r−1} that sends i to ki mod r is a permutation
whose inverse is the permutation π′ that sends i to k′i mod r, where k′ is
a multiplicative inverse of k modulo r. Then we have

σk(α) =
r−1
∑

i=0

aiξ
ki =

r−1
∑

i=0

aiξ
π(i) =

r−1
∑

i=0

aπ′(i)ξ
i.

Thus, the action of σk is to permute the coordinate vector (a0, . . . , ar−1)
of α, sending α to the element in E whose coordinate vector is
(aπ′(0), . . . , aπ′(r−1)). So we see that although we defined the maps σk in
a rather “highbrow” algebraic fashion, their behavior in concrete terms is
actually quite simple.

Recall that the p-power map on E is a Zp-algebra homomorphism (see Theo-
rem 19.7), and so for all α ∈ E, if α = g(ξ) for g ∈ Zp[X], then (by Theorem 16.7)
we have

αp = g(ξ)p = g(ξp) = σp(α).

Thus, σp acts just like the p-power map on all elements of E.
We can restate assumption (A3) as follows:

σn(ξ + j) = (ξ + j)n (j = 1, . . . , `).

That is to say, the map σn acts just like the n-power map on the elements ξ + j for
j = 1, . . . , `.

Now, although the σp map must act like the p-power map on all of E, there is
no good reason why the σn map should act like the n-power map on any particular

21.2 The algorithm and its analysis 555

element of E, and so the fact that it does so on all the elements ξ+j for j = 1, . . . , `
looks decidedly suspicious. To turn our suspicions into a contradiction, let us start
by defining some notation. For α ∈ E, let us define

C(α) := {k ∈ Z(r) : σk(α) = αk},

and for k ∈ Z(r), let us define

D(k) := {α ∈ E : σk(α) = αk}.

In words: C(α) is the set of all k for which σk acts like the k-power map on α,
and D(k) is the set of all α for which σk acts like the k-power map on α. From the
discussion above, we have p ∈ C(α) for all α ∈ E, and it is also clear that 1 ∈ C(α)
for all α ∈ E. Also, it is clear that α ∈ D(p) for all α ∈ E, and 1E ∈ D(k) for all
k ∈ Z(r).

The following two simple lemmas say that the sets C(α) and D(k) are multi-
plicative.

Lemma 21.7. For every α ∈ E, if k ∈ C(α) and k′ ∈ C(α), then kk′ ∈ C(α).

Proof. If σk(α) = αk and σk′ (α) = αk
′
, then

σkk′ (α) = σk(σk′ (α)) = σk(αk
′
) = (σk(α))k

′
= (αk)k

′
= αkk

′
,

where we have made use of the homomorphic property of σk. 2

Lemma 21.8. For every k ∈ Z(r), if α ∈ D(k) and β ∈ D(k), then αβ ∈ D(k).

Proof. If σk(α) = αk and σk(β) = βk, then

σk(αβ) = σk(α)σk(β) = αkβk = (αβ)k,

where again, we have made use of the homomorphic property of σk. 2

Let us define

• s to be the multiplicative order of [p]r ∈ Z∗r , and

• t to be the order of the subgroup of Z∗r generated by [p]r and [n]r.

Since r | (ps−1), if we take any extension field F of degree s over Zp (which we
know exists by Theorem 19.12), then since F ∗ is cyclic (Theorem 7.29) and has
order ps − 1, we know that there exists an element ζ ∈ F ∗ of multiplicative order
r (Theorem 6.32). Let us define the polynomial evaluation map τ̂ : Zp[X] → F

that sends g ∈ Zp[X] to g(ζ) ∈ F . Since X r − 1 is clearly in the kernel of τ̂, then
by Theorem 7.27, the map τ : E → F that sends g(ξ) to g(ζ), for g ∈ Zp[X], is a
well-defined ring homomorphism, and actually, it is a Zp-algebra homomorphism.

For concreteness, one could think of F as Zp[X]/(f), where f is an irreducible
factor of X r − 1 of degree s. In this case, we could simply take ζ to be [X]f (see

556 Deterministic primality testing

Example 19.1), and the map τ̂ above would be just the natural map from Zp[X] to
Zp[X]/(f).

The key to deriving our contradiction is to examine the set S := τ(D(n)), that
is, the image under τ of the set D(n) of all elements α ∈ E for which σn acts like
the n-power map.

Lemma 21.9. Under assumption (A1), we have

|S| ≤ n2bt1/2c.

Proof. Consider the set of integers

I := {nupv : u, v = 0, . . . , bt1/2c}.

We first claim that |I | > t. To prove this, we first show that each distinct pair
(u, v) gives rise to a distinct value nupv. To this end, we make use of our assumption
(A1) that n is not a prime power, and so is divisible by some prime q other than p.
Thus, if (u′, v′) 6= (u, v), then either

• u 6= u′, in which case the power of q in the prime factorization of nupv is
different from that in nu

′
pv
′
, or

• u = u′ and v 6= v′, in which case the power of p in the prime factorization
of nupv is different from that in nu

′
pv
′
.

The claim now follows from the fact that both u and v range over a set of size
bt1/2c + 1 > t1/2, and so there are strictly more than t such pairs (u, v).

Next, recall that t was defined to be the order of the subgroup of Z∗r generated
by [n]r and [p]r; equivalently, t is the number of distinct residue classes of the form
[nupv]r, where u and v range over all non-negative integers. Since each element of
I is of the form nupv, and |I | > t, we may conclude that there must be two distinct
elements of I , call them k and k′, that are congruent modulo r. Furthermore, any
element of I is a product of two positive integers each of which is at most nbt

1/2c,
and so both k and k′ lie in the range 1, . . . , n2bt1/2c.

Now, let α ∈ D(n). This is equivalent to saying n ∈ C(α). We always have
1 ∈ C(α) and p ∈ C(α), and so by Lemma 21.7, we have nupv ∈ C(α) for all
non-negative integers u, v, and so in particular, k, k′ ∈ C(α).

Since both k and k′ are in C(α), we have

σk(α) = αk and σk′ (α) = αk
′
.

Since k ≡ k′ (mod r), we have σk = σk′ , and hence

αk = αk
′
.

Now apply the homomorphism τ, obtaining

τ(α)k = τ(α)k
′
.

21.2 The algorithm and its analysis 557

Since this holds for all α ∈ D(n), we conclude that all elements of S are roots
of the polynomial X k − X k′ . Since k 6= k′, we see that X k − X k′ is a non-zero
polynomial of degree at most max{k, k′} ≤ n2bt1/2c, and hence can have at most
n2bt1/2c roots in the field F (Theorem 7.14). 2

Lemma 21.10. Under assumptions (A2) and (A3), we have

|S| ≥ 2min(t,`) − 1.

Proof. Let m := min(t, `). Under assumption (A3), we have ξ + j ∈ D(n) for
j = 1, . . . ,m. Under assumption (A2), we have p > r > t ≥ m, and hence the
integers j = 1, . . . ,m are distinct modulo p. Define

P :=
{

m
∏

j=1

(X + j)ej ∈ Zp[X] : ej ∈ {0, 1} for j = 1, . . . ,m, and
m
∑

j=1

ej < m
}

.

That is, we form P by taking products over all subsets S ({X + j : j = 1, . . . ,m}.
Clearly, |P | = 2m − 1.

Define P (ξ) := {f (ξ) ∈ E : f ∈ P} and P (ζ) := {f (ζ) ∈ F : f ∈ P}. Note
that τ(P (ξ)) = P (ζ), and that by Lemma 21.8, P (ξ) ⊆ D(n).

Therefore, to prove the lemma, it suffices to show that |P (ζ)| = 2m−1. Suppose
that this is not the case. This would give rise to distinct polynomials g, h ∈ Zp[X],
both of degree at most t − 1, such that

g(ξ) ∈ D(n), h(ξ) ∈ D(n), and τ(g(ξ)) = τ(h(ξ)).

So we have n ∈ C(g(ξ)) and (as always) 1, p ∈ C(g(ξ)). Likewise, we have
1, n, p ∈ C(h(ξ)). By Lemma 21.7, for all integers k of the form nupv, where u and
v range over all non-negative integers, we have

k ∈ C(g(ξ)) and k ∈ C(h(ξ)).

For each such k, since τ(g(ξ)) = τ(h(ξ)), we have τ(g(ξ))k = τ(h(ξ))k, and hence

0 = τ(g(ξ))k − τ(h(ξ))k

= τ(g(ξ)k) − τ(h(ξ)k) (τ is a homomorphism)

= τ(g(ξk)) − τ(h(ξk)) (k ∈ C(g(ξ)) and k ∈ C(h(ξ)))

= g(ζk) − h(ζk) (definition of τ).

Thus, the polynomial f := g − h ∈ Zp[X] is a non-zero polynomial of degree at
most t − 1, having roots ζk in the field F for all k of the form nupv. Now, t is by
definition the number of distinct residue classes of the form [nupv]r ∈ Z∗r . Also,
since ζ has multiplicative order r, for all integers k, k′, we have ζk = ζk

′
if and

only if k ≡ k′ (mod r). Therefore, as k ranges over all integers of the form nupv,

558 Deterministic primality testing

ζk ranges over precisely t distinct values in F . But since all of these values are
roots of the polynomial f , which is non-zero and of degree at most t − 1, this is
impossible (Theorem 7.14). 2

We are now (finally!) in a position to complete the proof of Theorem 21.5.
Under assumptions (A1), (A2), and (A3), Lemmas 21.9 and 21.10 imply that

2min(t,`) − 1 ≤ |S| ≤ n2bt1/2c. (21.3)

The contradiction is provided by the following:

Lemma 21.11. Under assumptions (A4) and (A5), we have

2min(t,`) − 1 > n2bt1/2c.

Proof. Observe that log2 n ≤ len(n), and so it suffices to show that

2min(t,`) − 1 > 22 len(n)bt1/2c,

and for this, it suffices to show that

min(t, `) > 2 len(n)bt1/2c,

since for all integers a, b with a > b ≥ 1, we have 2a > 2b + 1.
To show that t > 2 len(n)bt1/2c, it suffices to show that t > 2 len(n)t1/2, or

equivalently, that t > 4 len(n)2. But observe that by definition, t is the order
of the subgroup of Z∗r generated by [n]r and [p]r, which is at least as large as
the multiplicative order of [n]r in Z∗r , and by assumption (A4), this is larger than
4 len(n)2.

Finally, directly by assumption (A5), we have ` > 2 len(n)bt1/2c. 2

That concludes the proof of Theorem 21.5.

EXERCISE 21.1. Show that if Conjecture 5.24 is true, then the value of r discov-
ered in step 2 of Algorithm AKS satisfies r = O(len(n)2).

21.3 Notes
The algorithm presented here is due to Agrawal, Kayal, and Saxena [6].

If fast algorithms for integer and polynomial arithmetic are used, then using
the analysis presented here, it is easy to see that the algorithm runs in time
O(len(n)10.5+o(1)). More generally, it is easy to see that the algorithm runs in
time O(r1.5+o(1) len(n)3+o(1)), where r is the value determined in step 2 of the
algorithm. In our analysis of the algorithm, we were able to obtain the bound
r = O(len(n)5), leading to the running-time bound O(len(n)10.5+o(1)). Using a

21.3 Notes 559

result of Fouvry [37], one can show that r = O(len(n)3), leading to a running-
time bound of O(len(n)7.5+o(1)). Moreover, if Conjecture 5.24 on the density of
Sophie Germain primes were true, then one could show that r = O(len(n)2) (see
Exercise 21.1), which would lead to a running-time bound of O(len(n)6+o(1)). This
running-time bound can be achieved rigorously by a different algorithm, due to
Lenstra and Pomerance [62].

Prior to this algorithm, the fastest deterministic, rigorously proved primality test
was one introduced by Adleman, Pomerance, and Rumely [5], called the Jacobi
sum test, which runs in time

O(len(n)c len(len(len(n))))

for some constant c. Note that for numbers n with less than 2256 bits, the value of
len(len(len(n))) is at most 8, and so this algorithm runs in time O(len(n)8c) for any
n that one could ever actually write down.

We also mention the earlier work of Adleman and Huang [3], who gave a prob-
abilistic algorithm whose output is always correct, and which runs in expected
polynomial time (i.e., a Las Vegas algorithm, in the parlance of §9.7).

